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The Discrete Logarithm Problem (DLP)
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General group
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Hyperelliptic
curve *

Medium chara
finite field *
High chara
finite field *

Factorisation *

Small chara
finite field *

Multiplicative group G generated by g :
solving the discrete logarithm problem
in G , is inverting the map x 7→ gx

A hard problem in general,
and used as such in cryptography.
Several groups in practice:

Two families of algorithms :
Generic algorithms
(Pollard’s Rho, Pohlig-Hellman...)
Specific algorithms (Index Calculus

*

)
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Index Calculus Algorithms

If you want to compute Discrete Logs in G :

1 Collection of Relations
G

→ Create a lot of sparse multiplicative relations
between some (small) specific elements = the factor base∏

gei
i =

∏
ge′i

i ⇒
∑

(ei − e′i ) log(gi) = 0

→ So a lot of sparse linear equations

2 Linear Algebra
→ Recover the Discrete Logs of the factor base

3 Extension Phase (for small characteristic finite fields)
→ Recover the Discrete Logs of the extended factor base

4 Individual Logarithm Phase
→ Recover the Discrete Log of an arbitrary element
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Complexities

Asymptotic Complexities:

Collection of Relations
Linear Algebra
Extension Phase

Polynomial time

Individual Logarithm Phase
}
Quasipolynomial time

But in practice:
Linear algebra and extension phases dominate
What do we do ?
Simplified description of algorithms + additional ideas
⇒ Improve the complexity of the polynomial phases.
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Frobenius Representation Algorithms

Our goal: solve the DLP in Fqk .

How ? Represent Fqk ' Fq[X ]/(I(X )) where
Fqk

I(X ) is an irreducible polynomial of degree k such that:
I(X )|h1(X )Xq − h0(X )

or I(X )|h1(Xq)X − h0(Xq)

where h0 and h1 are polynomials of low degrees.
Why ? To have two equations in the finite field:∏
α∈Fq

(X−α) = Xq−X and Xq =
h0(X )

h1(X )︸ ︷︷ ︸
Frobenius Representation

or X =
h0(X q)

h1(X q)︸ ︷︷ ︸
Dual Frob. Rep.

What choice do we have ? Degree of h0 and h1.
What would be simple ? To take

h0 : deg 1 polynomial

or

h0 :

deg 2 polynomial

h1 : deg 2 polynomial h1 : deg 1 polynomial

}
useful variant
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Creation of Relations
Our goal: multiplicative relation between small degree polynomials.

Main idea : start from
∏

α∈Fq

(X − α) = Xq − X (∗∗).

Let A and B be 2 small polynomials in Fq[X ] (i.e. of degree 6 D).

B(X)
∏

α∈Fq
(A(X)−αB(X)) =

thanks to (∗∗)
A(X )qB(X )− A(X )B(X )q

=
Frob. linearity

A(Xq)B(X )− A(X )B(Xq)

=
Frob. Rep.

A
(

h0(X)

h1(X)

)
B(X)−A(X)B

(
h0(X)

h1(X)

)
︸ ︷︷ ︸

[A,B]D
h1(X )D

We finally get:

h1(X )DB(X )
∏

α∈Fq

(A(X )− αB(X ))

︸ ︷︷ ︸
Product of small polynomials !!

= [A,B]D(X )
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A Reduced Factor Base

We have: h1(X )DB(X )
∏

α∈Fq

(A(X )− αB(X ))

︸ ︷︷ ︸
polynomials of degree 6 D

= [A,B]D(X )

A natural Factor Base: Irreducible poly in Fq[X ] of deg 6 D.

D ↘ ⇒ size of the factor base ↘ ⇒ complexity of Linear
Algebra ↘. The smaller, the better. Until now, D = 3.
What is simple ? Irreducible poly in Fq[X ] of degree 6 2.
But... it’s not possible to ↘ D, isn’t it? Previous constraints:

1 Need to generate enough good equations = equations where
[A,B]2 splits in terms of degree 6 2. Pb: the probability P to
have good equations is too small w.r.t the number of
equations required (need P > 1/2).

2 Need to be able to descent large polynomials to degree 2 ones.
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A Reduced Factor Base: Systematic factors of [A, B]D

Our goal, solving pb 1: i.e. improve the probability P.
How ? [A,B]2 is a degree 6 polynomial. The prob that it
factors into degree 2 polynomials is too low.

Yet, [A,B]D has a systematic factor of degree 3 ! Namely
X h1(X )− h0(X ).
A degree 3 polynomial factors into terms of degree at most 2
with prob P > 2/3 > 1/2.

Fqk

⇒ Linear Algebra permits to recover the DLogs of the factor base
in O((# factor base︸ ︷︷ ︸

q2

)2(# of entries︸ ︷︷ ︸
q

)) ≈ O(q5) operations.
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Extend the Factor Base to Degree 3

Our goal: Solving pb 2 i.e. extend the factor base to degree 3
BUT without performing linear algebra on a matrix of dim q3.

1 Divide the irreducible deg. 3 monic polynomials in groups.

q3 elts q2 elts q2 elts

q2 eltsq2 elts

q2 elts q2 elts

q grps

What is simple ? To consider that 2 polynomials belongs to
the same group if they have the same constant coefficient.

2 Given q2
, generate equations involving only poly in q2

and
degree 1 and 2 polynomials (whose logs are already known).
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Extend the Factor Base to Degree 3

An example: let c
= {(X 3 + c) + αX 2 + β X |(α, β) ∈ Fq

2}.

c

As for degree 2: set A(X ) = (X 3 + c) + αX 2 and
B(X ) = (X 3 + c) + β X and create relations of the form:

h1(X )3 B(X )
∏

α∈Fq

(A(X )− αB(X ))

︸ ︷︷ ︸
all belongs to c

!!

= [A,B]3(X )︸ ︷︷ ︸
deg 8 with these A and B
+ deg 3 systematic factor
+ divisible by X

Prob that [A,B]3 factors into deg 6 3⇒ 41%. Enough !
Complexity to recover the Dlogs of all degree 3 polynomials:
O((# c︸ ︷︷ ︸

q

)(# factor base︸ ︷︷ ︸
q2

)2(# of entries︸ ︷︷ ︸
q

)) ≈ O(q6) ops.
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Extend the Factor Base to Degree 4

Our goal: extend the factor base to degree 4
by performing smaller linear algebra steps.

1

q4 elts q3 elts q3 elts

q3 eltsq3 elts

q3 elts q3 elts

q grps q2q2
q2q2

q2q2
q gr

What is simple ? To consider that:
2 poly belongs to the same q3

if same constant coefficient.
AND 2 poly belongs to the same q2 if same coeff before X .

2 Given q2 , generate equations involving only poly in it and
degree 1, 2 and 3 polynomials.
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Extend the Factor Base to Degree 4

How ? Previous techniques (bilinear descent from 4 to 3) +
additional equations + systematic factors of [A,B]4.

Complexity of DLogs computation of ONE q3
:

O((# q2 in q3︸ ︷︷ ︸
q

) · (# q2︸ ︷︷ ︸
q2

)2 (#entries︸ ︷︷ ︸
q

)) = O(q6) ops.

Final complexity dominated by the first q3
computation:

Unknown
Reducible
Bili. desc.
4 → 3
Bili. desc.
4 → 4

⇒ Final complexity of extension to deg 4
in O(q6) operations.

Main Result
Final asymptotic complexity of the three first phases:

O(q6) operations – to be compared with previous O(q7).
Fqk
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And in practice ?

New record in characteristic 3 on F35·479 , a finite field of
cardinality a 3796-bit integer.

Not a special extension field such as Kummer extension !
Make use of the Dual Frobenius Representation combined with
the useful variant (both not presented here).

To be compared with previous record in characteristic 3
by Adj, Menezes, Oliveira and Rodriguez-Henriquez on a
1551-bit finite field.
Time : 8600 CPU-hours ≈ 1 CPU-year
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Thank you for your attention !
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