Simplified Settings for Discrete Logarithms in Small Characteristic Finite Fields

Antoine Joux ¹ Cécile Pierrot ²

¹CryptoExperts, Paris and Chaire de la Fondation Partenariale de l'UPMC, France

²DGA, CNRS, INRIA and UPMC, Sorbonne-Universités, Paris, France

December 9th Asiacrypt 2014, Kaohsiung, Taiwan

 Multiplicative group G generated by g: solving the discrete logarithm problem in G, is inverting the map x → g^x

- Multiplicative group G generated by g: solving the discrete logarithm problem in G, is inverting the map x → g^x
- A hard problem in general, and used as such in cryptography.

- Multiplicative group G generated by g: solving the discrete logarithm problem in G, is inverting the map x → g^x
- A hard problem in general, and used as such in cryptography.
- Several groups in practice:

- Multiplicative group G generated by g: solving the discrete logarithm problem in G, is inverting the map x → g^x
- A hard problem in general, and used as such in cryptography.
- Several groups in practice:

- Multiplicative group G generated by g: solving the discrete logarithm problem in G, is inverting the map x → g^x
- A hard problem in general, and used as such in cryptography.
- Several groups in practice:
- Two families of algorithms :
 - Generic algorithms (Pollard's Rho, Pohlig-Hellman...)
 - Specific algorithms (Index Calculus

- Multiplicative group G generated by g: solving the discrete logarithm problem in G, is inverting the map x → g^x
- A hard problem in general, and used as such in cryptography.
- Several groups in practice:
- Two families of algorithms :
 - Generic algorithms (Pollard's Rho, Pohlig-Hellman...)
 - Specific algorithms (Index Calculus *)

Index Calculus Algorithms

If you want to compute Discrete Logs in G:

Collection of Relations

 \rightarrow Create a lot of sparse multiplicative relations between some (small) specific elements = the factor base

$$\prod g_i^{e_i} = \prod g_i^{e_i'} \quad \Rightarrow \quad \sum (e_i - e_i') \log(g_i) = 0$$

 \rightarrow So a lot of sparse linear equations

Index Calculus Algorithms

If you want to compute Discrete Logs in G:

Collection of Relations

 \rightarrow Create a lot of sparse multiplicative relations between some (small) specific elements = the factor base

$$\prod g_i^{e_i} = \prod g_i^{e_i'} \quad \Rightarrow \quad \sum (e_i - e_i') \log(g_i) = 0$$

 \rightarrow So a lot of sparse linear equations

2 Linear Algebra

 \rightarrow Recover the Discrete Logs of the factor base

If you want to compute Discrete Logs in G:

Collection of Relations

 \rightarrow Create a lot of sparse multiplicative relations between some (small) specific elements = the factor base

$$\prod g_i^{e_i} = \prod g_i^{e_i'} \quad \Rightarrow \quad \sum (e_i - e_i') \log(g_i) = 0$$

 \rightarrow So a lot of sparse linear equations

2 Linear Algebra

 \rightarrow Recover the Discrete Logs of the factor base

Section Phase (for small characteristic finite fields)
 → Recover the Discrete Logs of the extended factor base

If you want to compute Discrete Logs in G:

Collection of Relations

 \rightarrow Create a lot of sparse multiplicative relations between some (small) specific elements = the factor base

$$\prod g_i^{e_i} = \prod g_i^{e_i'} \quad \Rightarrow \quad \sum (e_i - e_i') \log(g_i) = 0$$

 \rightarrow So a lot of sparse linear equations

2 Linear Algebra

 \rightarrow Recover the Discrete Logs of the factor base

- Sextension Phase (for small characteristic finite fields)
 - \rightarrow Recover the Discrete Logs of the extended factor base
- Individual Logarithm Phase
 - \rightarrow Recover the Discrete Log of an arbitrary element

• Asymptotic Complexities:

Collection of Relations Linear Algebra Extension Phase

Individual Logarithm Phase } Quasipolynomial time

• Asymptotic Complexities:

Collection of Relations Linear Algebra Extension Phase

Individual Logarithm Phase } Quasipolynomial time

• But in practice:

Linear algebra and extension phases dominate

• Asymptotic Complexities:

Collection of Relations Linear Algebra Extension Phase

Individual Logarithm Phase } Quasipolynomial time

• But in practice:

Linear algebra and extension phases dominate

What do we do ?
 Simplified description of algorithms + additional ideas
 ⇒ Improve the complexity of the polynomial phases.

• Our goal: solve the DLP in \mathbb{F}_{q^k} .

★ Ξ →

• Our goal: solve the DLP in \mathbb{F}_{q^k} .

• How ? Represent $\mathbb{F}_{q^k} \simeq \mathbb{F}_q[X]/(I(X))$ where I(X) is an irreducible polynomial of degree k such that: $I(X)|h_1(X)X^q - h_0(X)$

where h_0 and h_1 are polynomials of low degrees.

• Our goal: solve the DLP in \mathbb{F}_{q^k} .

• How ? Represent $\mathbb{F}_{q^k} \simeq \mathbb{F}_q[X]/(I(X))$ where I(X) is an irreducible polynomial of degree k such that:

 $I(X)|h_1(X)X^q - h_0(X)$

where h_0 and h_1 are polynomials of low degrees. • Why ? To have two equations in the finite field:

$$\prod_{\alpha \in \mathbb{F}_q} (X - \alpha) = X^q - X \quad \text{and} \quad \underbrace{X^q}_{\text{Frobenius Perpresentation}} \underbrace{X^q}_{\text{Frobenius Perpresentation}} X^q = \frac{h_0(X)}{h_1(X)}$$

Frobenius Representation

• Our goal: solve the DLP in \mathbb{F}_{q^k} .

• How ? Represent $\mathbb{F}_{q^k} \simeq \mathbb{F}_q[X]/(I(X))$ where I(X) is an irreducible polynomial of degree k such that:

 $I(X)|h_1(X)X^q - h_0(X)$

where h_0 and h_1 are polynomials of low degrees. • Why ? To have two equations in the finite field:

$$\prod_{\alpha \in \mathbb{F}_q} (X - \alpha) = X^q - X \quad \text{and} \quad \underbrace{X^q = \frac{h_0(X)}{h_1(X)}}_{q = 1}$$

Frobenius Representation

• What choice do we have ? Degree of h_0 and h_1 .

• Our goal: solve the DLP in \mathbb{F}_{q^k} .

• How ? Represent $\mathbb{F}_{q^k} \simeq \mathbb{F}_q[X]/(I(X))$ where I(X) is an irreducible polynomial of degree k such that:

$$I(X)|h_1(X)X^q - h_0(X)$$

where h₀ and h₁ are polynomials of low degrees.
Why ? To have two equations in the finite field:

$$\prod_{\alpha \in \mathbb{F}_q} (X - \alpha) = X^q - X \quad \text{and} \quad \underbrace{X^q}_{h_1(X)} = \underbrace{\frac{h_0(X)}{h_1(X)}}_{X}$$

Frobenius Representation

- What choice do we have ? Degree of h_0 and h_1 .
- What would be simple ? To take
 - h_0 : deg 1 polynomial
 - h_1 : deg 2 polynomial

• Our goal: solve the DLP in \mathbb{F}_{q^k} .

 \mathbb{F}_{q^k} • How ? Represent $\mathbb{F}_{q^k} \simeq \mathbb{F}_q[X]/(I(X))$ where I(X) is an irreducible polynomial of degree k such that:

 $I(X)|h_1(X)X^q - h_0(X)$ or $I(X)|h_1(X^q)X - h_0(X^q)$

where h_0 and h_1 are polynomials of low degrees. • Why ? To have two equations in the finite field:

$$\prod_{\alpha \in \mathbb{F}_q} (X - \alpha) = X^q - X \quad \text{and} \quad \underbrace{X^q = \frac{h_0(X)}{h_1(X)}}_{\text{Frabular Frabelian Barrameter transformed and the second se$$

Frobenius Representation

- What choice do we have ? Degree of h_0 and h_1 .
- What would be simple ? To take

 h_0 : deg 1 polynomial or h_0 : deg 2 polynomial h_1 : deg 2 polynomial h_1 : deg 1 polynomial $\}$ useful variant

Our goal: multiplicative relation between small degree polynomials.

Our goal: multiplicative relation between small degree polynomials.

Main idea : start from
$$\prod_{\alpha \in \mathbb{F}_q} (X - \alpha) = X^q - X$$
 (**).

Let A and B be 2 small polynomials in $\mathbb{F}_q[X]$ (i.e. of degree $\leq D$).

$$B(X)\prod_{\alpha\in\mathbb{F}_q}(A(X)-\alpha B(X)) = A(X)^q B(X) - A(X)B(X)^q$$

thanks to (**)

Our goal: multiplicative relation between small degree polynomials.

Main idea : start from
$$\prod_{\alpha \in \mathbb{F}_q} (X - \alpha) = X^q - X \quad (**).$$

Let A and B be 2 small polynomials in $\mathbb{F}_q[X]$ (i.e. of degree $\leq D$).
$$B(X)\prod_{\alpha \in \mathbb{F}_q} (A(X) - \alpha B(X)) = A(X)^q B(X) - A(X)B(X)^q$$
$$= A(X)^q B(X) - A(X)B(X)^q$$

Frob. linearity

Our goal: multiplicative relation between small degree polynomials.

Main idea : start from
$$\prod_{\alpha \in \mathbb{F}_{q}} (X - \alpha) = X^{q} - X \quad (**).$$

Let A and B be 2 small polynomials in $\mathbb{F}_{q}[X]$ (i.e. of degree $\leq D$).
$$B(X)\prod_{\alpha \in \mathbb{F}_{q}} (A(X) - \alpha B(X)) = A(X)^{q}B(X) - A(X)B(X)^{q}$$
$$= A(X)^{q}B(X) - A(X)B(X)^{q}$$
$$= A(X^{q})B(X) - A(X)B(X^{q})$$

Our goal: multiplicative relation between small degree polynomials.

Main idea : start from
$$\prod_{\alpha \in \mathbb{F}_{q}} (X - \alpha) = X^{q} - X \quad (**).$$
Let A and B be 2 small polynomials in $\mathbb{F}_{q}[X]$ (i.e. of degree $\leq D$).

$$B(X)\prod_{\alpha \in \mathbb{F}_{q}} (A(X) - \alpha B(X)) = A(X)^{q}B(X) - A(X)B(X)^{q}$$

$$= A(X)^{q}B(X) - A(X)B(X)^{q}$$

$$A(X^{q})B(X) - A(X)B(X^{q})$$

$$= A(X)^{q}B(X) - A(X)B(X^{q})$$

Ve finally get.

 $h_1(X)^D B(X) \prod (A(X) - \alpha B(X)) = [A, B]_D(X)$ $\alpha \in \mathbb{F}_{q}$ Product of small polynomials !!

We have: $\underbrace{h_1(X)^D B(X)}_{\alpha \in \mathbb{F}_q} \underbrace{(A(X) - \alpha B(X))}_{\text{polynomials of degree } \leqslant D} = [A, B]_D(X)$

• A natural Factor Base: Irreducible poly in $\mathbb{F}_q[X]$ of deg $\leq D$.

We have: $h_1(X)^D B(X) \prod_{\alpha \in \mathbb{F}_q} (A(X) - \alpha B(X)) = [A, B]_D(X)$ polynomials of degree $\leq D$ • A natural Factor Base: Irreducible poly in $\mathbb{F}_q[X]$ of deg $\leq D$.
• $D \searrow \Rightarrow$ size of the factor base $\searrow \Rightarrow$ complexity of Linear

Algebra \searrow . The smaller, the better. Until now, D = 3.

We have: $h_1(X)^D B(X) \prod_{\alpha \in \mathbb{F}_q} (A(X) - \alpha B(X)) = [A, B]_D(X)$

polynomials of degree $\leq D$

- A natural Factor Base: Irreducible poly in $\mathbb{F}_q[X]$ of deg $\leq D$.
- $D \searrow \Rightarrow$ size of the factor base $\searrow \Rightarrow$ complexity of Linear Algebra \searrow . The smaller, the better. Until now, D = 3.
- What is simple ? Irreducible poly in $\mathbb{F}_q[X]$ of degree ≤ 2 .
- But... it's not possible to $\searrow D$, isn't it?

We have:
$$h_1(X)^D B(X) \prod_{\alpha \in \mathbb{F}_q} (A(X) - \alpha B(X)) = [A, B]_D(X)$$

Factorization ?

polynomials of degree $\leq D$

- A natural Factor Base: Irreducible poly in $\mathbb{F}_q[X]$ of deg $\leq D$.
- $D \searrow \Rightarrow$ size of the factor base $\searrow \Rightarrow$ complexity of Linear Algebra \searrow . The smaller, the better. Until now, D = 3.
- What is simple ? Irreducible poly in $\mathbb{F}_q[X]$ of degree ≤ 2 .
- But... it's not possible to $\searrow D$, isn't it? Previous constraints:
 - Need to generate enough good equations = equations where [A, B]₂ splits in terms of degree ≤ 2. Pb: the probability P to have good equations is too small w.r.t the number of equations required (need P > 1/2).

2 Need to be able to descent large polynomials to degree 2 ones.

• • = • • = •

A Reduced Factor Base: Systematic factors of $[A, B]_D$

- Our goal, solving pb 1: i.e. improve the probability \mathcal{P} .
- How ? $[A, B]_2$ is a degree 6 polynomial. The prob that it factors into degree 2 polynomials is too low.

A Reduced Factor Base: Systematic factors of $[A, B]_D$

- \bullet Our goal, solving pb 1: i.e. improve the probability $\mathcal{P}.$
- How ? $[A, B]_2$ is a degree 6 polynomial. The prob that it factors into degree 2 polynomials is too low. Yet, $[A, B]_D$ has a systematic factor of degree 3 ! Namely $X h_1(X) - h_0(X)$.
- A degree 3 polynomial factors into terms of degree at most 2 with prob $\mathcal{P}>2/3>1/2.$

A Reduced Factor Base: Systematic factors of $[A, B]_D$

- \bullet Our goal, solving pb 1: i.e. improve the probability $\mathcal{P}.$
- How ? $[A, B]_2$ is a degree 6 polynomial. The prob that it factors into degree 2 polynomials is too low. Yet, $[A, B]_D$ has a systematic factor of degree 3 ! Namely $X h_1(X) - h_0(X)$.
- A degree 3 polynomial factors into terms of degree at most 2 with prob $\mathcal{P}>2/3>1/2.$

⇒ Linear Algebra permits to recover the DLogs of the factor base in $O((\# \text{ factor base})^2(\# \text{ of entries})) \approx O(q^5)$ operations.

Our goal: Solving pb 2 i.e. extend the factor base to degree 3 BUT without performing linear algebra on a matrix of dim q^3 .

→ Ξ →

Our goal: Solving pb 2 i.e. extend the factor base to degree 3 BUT without performing linear algebra on a matrix of dim q^3 .

Oivide the irreducible deg. 3 monic polynomials in groups.

Our goal: Solving pb 2 i.e. extend the factor base to degree 3 BUT without performing linear algebra on a matrix of dim q^3 .

Divide the irreducible deg. 3 monic polynomials in groups.

What is simple ? To consider that 2 polynomials belongs to the same group if they have the same constant coefficient.

Our goal: Solving pb 2 i.e. extend the factor base to degree 3 BUT without performing linear algebra on a matrix of dim q^3 .

Divide the irreducible deg. 3 monic polynomials in groups.

What is simple ? To consider that 2 polynomials belongs to the same group if they have the same constant coefficient.

3 Given (q^2) , generate equations involving only poly in (q^2) and degree 1 and 2 polynomials (whose logs are already known).

 \sim

• An example: let
$$c = \{(X^3 + c) + \alpha X^2 + \beta X | (\alpha, \beta) \in \mathbb{F}_q^2\}.$$

A. Joux and C. Pierrot Simplified Settings for DLogs

→ Ξ →

æ

 \frown

• An example: let
$$\bigcirc = \{(X^3 + c) + \alpha X^2 + \beta X | (\alpha, \beta) \in \mathbb{F}_q^2\}.$$

Reducible
$$\rightarrow$$
 Irreducible \Rightarrow new unknowns

æ

▶ < E ▶ < E</p>

• An example: let $\bigcirc = \{(X^3 + c) + \alpha X^2 + \beta X | (\alpha, \beta) \in \mathbb{F}_q^2\}.$

Reducible \rightarrow Irreducible \Rightarrow new unknowns

As for degree 2: set $A(X) = (X^3 + c) + \alpha X^2$ and $B(X) = (X^3 + c) + \beta X$ and create relations of the form:

$$h_1(X)^3 \underbrace{B(X) \prod_{\alpha \in \mathbb{F}_q} (A(X) - \alpha B(X))}_{\text{all belongs to } c !!} = de^{A(X)}$$

deg 8 with these A and B + deg 3 systematic factor + divisible by X

 $[A, B]_3(X)$

• An example: let
$$\bigcirc = \{(X^3 + c) + \alpha X^2 + \beta X | (\alpha, \beta) \in \mathbb{F}_q^2\}.$$

Reducible Irreducible \Rightarrow new unknowns As for degree 2: set $A(X) = (X^3 + c) + \alpha X^2$ and $B(X) = (X^3 + c) + \beta X$ and create relations of the form:

$$h_1(X)^3 \underbrace{B(X)}_{\alpha \in \mathbb{F}_q} \underbrace{(A(X) - \alpha B(X))}_{\text{all belongs to } \mathbb{C}_{!!}} = \underbrace{[A, B]_3(X)}_{\text{deg 8 with these } A \text{ and } B}_{\text{h deg 3 systematic factor}}_{\text{h divisible by } X}$$

Prob that $[A, B]_3$ factors into deg $\leq 3 \Rightarrow 41\%$. Enough !

• An example: let $\bigcirc = \{(X^3 + c) + \alpha X^2 + \beta X | (\alpha, \beta) \in \mathbb{F}_q^2\}.$

Reducible \rightarrow Irreducible \Rightarrow new unknowns

As for degree 2: set $A(X) = (X^3 + c) + \alpha X^2$ and $B(X) = (X^3 + c) + \beta X$ and create relations of the form:

$$h_1(X)^3 B(X) \prod_{\alpha \in \mathbb{F}_q} (A(X) - \alpha B(X)) = \underbrace{[A, B]_3(X)}_{\text{deg 8 with these } A \text{ and } B} \\ \underbrace{[A, B]_3(X)}_{\text{deg 8 with these } A \text{ and } B} \\ + \text{deg 3 systematic factor}_{\text{divisible by } X}$$

Prob that $[A, B]_3$ factors into deg $\leq 3 \Rightarrow 41\%$. Enough !

• Complexity to recover the Dlogs of all degree 3 polynomials: $O((\underbrace{\# c}_{q})(\underbrace{\# \text{ factor base}}_{q^2})^2(\underbrace{\# \text{ of entries}}_{q})) \approx O(q^6) \text{ ops.}$

Our goal: extend the factor base to degree 4 by performing smaller linear algebra steps.

< ∃ >

Our goal: extend the factor base to degree 4 by performing smaller linear algebra steps.

Our goal: extend the factor base to degree 4 by performing smaller linear algebra steps.

What is simple ? To consider that: 2 poly belongs to the same $\widehat{q^3}$ if same constant coefficient. AND 2 poly belongs to the same \widehat{q} if same coeff before X.

Our goal: extend the factor base to degree 4 by performing smaller linear algebra steps.

What is simple ? To consider that:

- 2 poly belongs to the same 3 if same constant coefficient. AND 2 poly belongs to the same 3 if same coeff before X.
- Given , generate equations involving only poly in it and degree 1, 2 and 3 polynomials.

• How ? Previous techniques (bilinear descent from 4 to 3) + additional equations + systematic factors of $[A, B]_4$.

- How ? Previous techniques (bilinear descent from 4 to 3) + additional equations + systematic factors of $[A, B]_4$.
- Complexity of DLogs computation of ONE (q^3) :

$$O((\underbrace{\# \stackrel{q^2}{@} in \stackrel{(q^3)}{@}}_{q}) \cdot (\underbrace{\# \stackrel{q^2}{@}}_{q^2})^2 \underbrace{(\# entries}_{q})) = O(q^6) \text{ ops.}$$

- How ? Previous techniques (bilinear descent from 4 to 3) + additional equations + systematic factors of $[A, B]_4$.
- Complexity of DLogs computation of ONE (q^3) :

★ ∃ ► < ∃</p>

- How ? Previous techniques (bilinear descent from 4 to 3) + additional equations + systematic factors of $[A, B]_4$.
- Complexity of DLogs computation of ONE (q^3) :

$$O((\underbrace{\# \ q^{2} \ in \ q^{3}}_{q}) \cdot (\underbrace{\# \ q^{2}}_{q^{2}})^{2} \underbrace{(\# entries)}_{q}) = O(q^{6}) \text{ ops.}$$

Final complexity dominated by the first ^q computation:
 Unknown

- How ? Previous techniques (bilinear descent from 4 to 3) + additional equations + systematic factors of $[A, B]_4$.
- Complexity of DLogs computation of ONE (q^3) :

$$O((\underbrace{\# \ \mathbf{q} \ \mathbf{q}}_{q}) \cdot (\underbrace{\# \ \mathbf{q} \ \mathbf{q}}_{q^2})^2 \underbrace{(\# \text{entries}}_{q})) = O(q^6) \text{ ops.}$$

Final complexity dominated by the first ^(q) computation:
 Unknown

- How ? Previous techniques (bilinear descent from 4 to 3) + additional equations + systematic factors of $[A, B]_4$.
- Complexity of DLogs computation of ONE (q^3) :

$$O((\underbrace{\# \ \ \, q^3}_{q}) \cdot (\underbrace{\# \ \ \, q^2}_{q^2})^2 \underbrace{(\# \text{entries})}_{q}) = O(q^6) \text{ ops.}$$

Final complexity dominated by the first ^q computation:
 Unknown

- How ? Previous techniques (bilinear descent from 4 to 3) + additional equations + systematic factors of $[A, B]_4$.
- Complexity of DLogs computation of ONE (q^3) :

$$O((\underbrace{\# \ \mathbf{q}}^{q}) \cdot (\underbrace{\# \ \mathbf{q}}^{q})^{2} \underbrace{(\# \text{entries}}_{q})) = O(q^{6}) \text{ ops.}$$

Final complexity dominated by the first $\underbrace{(q^{3})}_{q}$ computation

Final complexity dominated by the first ^q computation:
 Unknown

- How ? Previous techniques (bilinear descent from 4 to 3) + additional equations + systematic factors of $[A, B]_4$.
- Complexity of DLogs computation of ONE (q^3) :

$$O((\underbrace{\# \ \mathbf{q}}^{q}) \cdot (\underbrace{\# \ \mathbf{q}}^{q})^{2} \underbrace{(\# \text{entries}}_{q})) = O(q^{6}) \text{ ops.}$$

Final complexity dominated by the first ^(q3) computation:
 Unknown

⇒ Final complexity of extension to deg 4 in $O(q^6)$ operations.

- How ? Previous techniques (bilinear descent from 4 to 3) + additional equations + systematic factors of $[A, B]_4$.
- Complexity of DLogs computation of ONE (q^3) :

 $O((\underbrace{\# \qquad q^{3}}_{q}) \cdot (\underbrace{\# \qquad q^{2}}_{q^{2}})^{2} \underbrace{(\# \text{entries}}_{q})) = O(q^{6}) \text{ ops.}$

Final complexity dominated by the first ^(q3) computation:
 Unknown

Reducible Bili. desc. $4 \rightarrow 3$ Bili. desc. $4 \rightarrow 4$

 $\Rightarrow Final complexity of extension to deg 4$ $in <math>O(q^6)$ operations.

Main Result

Final asymptotic complexity of the three first phases:

 $O(q^6)$ operations – to be compared with previous $O(q^7)$.

And in practice ?

- New record in characteristic 3 on $\mathbb{F}_{3^{5\cdot479}},$ a finite field of cardinality a 3796-bit integer.
 - Not a special extension field such as Kummer extension !
 - Make use of the Dual Frobenius Representation combined with the useful variant (both not presented here).
- To be compared with previous record in characteristic 3 by Adj, Menezes, Oliveira and Rodriguez-Henriquez on a 1551-bit finite field.
- Time : 8600 CPU-hours ≈ 1 CPU-year

Thank you for your attention !

æ