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The Discrete Logarithm Problem (DLP)

@ Multiplicative group G generated by g:
solving the discrete logarithm problem
in G, is inverting the map x — g*
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The Discrete Logarithm Problem (DLP)

@ Multiplicative group G generated by g:
solving the discrete logarithm problem
in G, is inverting the map x — g*

@ A hard problem in general,
and used as such in cryptography.
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The Discrete Logarithm Problem (DLP)

@ Multiplicative group G generated by g:
solving the discrete logarithm problem
in G, is inverting the map x — g*

@ A hard problem in general,
and used as such in cryptography.

@ Several groups in practice:

General group
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finite field *
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.S %k

€Xponentiy|

Complex;

mall chara
finite field *

quasi po)

A. Joux and C. Pierrot Simplified Settings for DLogs



The Discrete Logarithm Problem (DLP)

@ Multiplicative group G generated by g:
solving the discrete logarithm problem
in G, is inverting the map x — g*

@ A hard problem in general,
and used as such in cryptography.

General group
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@ Several groups in practice:

Complex;
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The Discrete Logarithm Problem (DLP)

@ Multiplicative group G generated by g:
solving the discrete logarithm problem
in G, is inverting the map x — g~

@ A hard problem in general,
and used as such in cryptography.

General group

Elliptic curve

€Xponentiy|

@ Several groups in practice: '5 Hyperellptic
- curve
e Two families of algorithms : g
. . Med
o Generic algorithms 3
(Pollard’s Rho, Pohlig-Hellman...) e,

| mall chara
(Ezea)
—_—

o Specific algorithms (Index Calculus )
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The Discrete Logarithm Problem (DLP)

@ Multiplicative group G generated by g:
solving the discrete logarithm problem
in G, is inverting the map x — g*

@ A hard problem in general,
and used as such in cryptography.
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e Specific algorithms (Index Calculus *)
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Index Calculus Algorithms

If you want to compute Discrete Logs in G:

G
@ Collection of Relations Q

— Create a lot of sparse multiplicative relations
between some (small) specific elements = the factor base

Hg;e"ZHgf’{ = Y (ei—e)log(gi) =0

— So a lot of sparse linear equations
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Index Calculus Algorithms

If you want to compute Discrete Logs in G:

G
@ Collection of Relations known

— Create a lot of sparse multiplicative relations
between some (small) specific elements = the factor base

Hg;e"ZHgf’{ = Y (ei—e)log(gi) =0

— So a lot of sparse linear equations

@ Linear Algebra
— Recover the Discrete Logs of the factor base
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Index Calculus Algorithms

If you want to compute Discrete Logs in G:

G
@ Collection of Relations known

— Create a lot of sparse multiplicative relations
between some (small) specific elements = the factor base

Hg;e"ZHgf’{ = Y (ei—e)log(gi) =0

— So a lot of sparse linear equations

@ Linear Algebra
— Recover the Discrete Logs of the factor base

© Extension Phase (for small characteristic finite fields)
— Recover the Discrete Logs of the extended factor base
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Index Calculus Algorithms

If you want to compute Discrete Logs in G:

G
@ Collection of Relations known

— Create a lot of sparse multiplicative relations
between some (small) specific elements = the factor base

Hg;e"ZHgf’{ = Y (ei—e)log(gi) =0

— So a lot of sparse linear equations

@ Linear Algebra
— Recover the Discrete Logs of the factor base

© Extension Phase (for small characteristic finite fields)
— Recover the Discrete Logs of the extended factor base

@ Individual Logarithm Phase
— Recover the Discrete Log of an arbitrary element
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Complexities

@ Asymptotic Complexities:

Collection of Relations
Linear Algebra Polynomial time
Extension Phase

Individual Logarithm Phase }Quasipolynomial time
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Complexities

@ Asymptotic Complexities:

Collection of Relations
Linear Algebra Polynomial time
Extension Phase

Individual Logarithm Phase }Quasipolynomial time

@ But in practice:
Linear algebra and extension phases dominate
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Complexities

@ Asymptotic Complexities:

Collection of Relations
Linear Algebra Polynomial time
Extension Phase

Individual Logarithm Phase }Quasipolynomial time
@ But in practice:
Linear algebra and extension phases dominate

o What do we do ?
Simplified description of algorithms + additional ideas
= Improve the complexity of the polynomial phases.
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Frobenius Representation Algorithms

@ Our goal: solve the DLP in F .
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Frobenius Representation Algorithms

@ Our goal: solve the DLP in F .

o How 7 Represent F « >~ F[X]/(/(X)) where

I(X) is an irreducible polynomial of degree k such that:
1(X)|h1(X)X9 — ho(X)

where hg and h; are polynomials of low degrees.
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Frobenius Representation Algorithms

@ Our goal: solve the DLP in F .

o How 7 Represent F « >~ F[X]/(/(X)) where

I(X) is an irreducible polynomial of degree k such that:
1(X)|h1(X)XT — ho(X)
where hg and h; are polynomials of low degrees.
@ Why 7 To have two equations in the finite field:
_ ho(X)
hi(X)

Frobenius Representation

] X-a)=X9-X  and  X¢

a€clFy
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Frobenius Representation Algorithms

@ Our goal: solve the DLP in F .

o How 7 Represent F « >~ F[X]/(/(X)) where

I(X) is an irreducible polynomial of degree k such that:
1(X)|h1(X)XT — ho(X)
where hg and h; are polynomials of low degrees.
@ Why 7 To have two equations in the finite field:
_ ho(X)
hi(X)

Frobenius Representation

] X-a)=X9-X  and  X¢

a€clFy

@ What choice do we have 7 Degree of hy and h;.
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Frobenius Representation Algorithms

@ Our goal: solve the DLP in F .

o How 7 Represent F « >~ F[X]/(/(X)) where

I(X) is an irreducible polynomial of degree k such that:
1(X)|h1(X)XT — ho(X)
where hg and h; are polynomials of low degrees.
@ Why 7 To have two equations in the finite field:
_ ho(X)
hi(X)

Frobenius Representation

] X-a)=X9-X  and  X¢

a€clFy

@ What choice do we have 7 Degree of hy and h;.
@ What would be simple 7 To take

ho : deg 1 polynomial
hy : deg 2 polynomial
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Frobenius Representation Algorithms

@ Our goal: solve the DLP in F .

o How 7 Represent F « >~ F[X]/(/(X)) where

I(X) is an irreducible polynomial of degree k such that:
1(X)|h1(X)XT — ho(X) or [(X)|h1 (X)X — ho(X9)
where hg and h; are polynomials of low degrees.
@ Why 7 To have two equations in the finite field:
— ho(X) or X = ho(X7)
hl(X) hi(X9)
————
Dual Frob. Rep.

] X-a)=X9-X  and  X¢
a€clFy
Frobenius Representation
@ What choice do we have 7 Degree of hy and h;.
@ What would be simple 7 To take
ho : deg 1 polynomial or hg: deg 2 polynomial

. useful variant
hy : deg 2 polynomial hi : deg 1 polynomial }
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Creation of Relations

Our goal: multiplicative relation between small degree polynomials.
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Creation of Relations

Our goal: multiplicative relation between small degree polynomials.

Main idea : start from J] (X —a) =X9—X (xx).
a€clfq
Let A and B be 2 small polynomials in Fg[X] (i.e. of degree < D).

BOX) [ er, (AX)—aB(X)) A(X)7B(X) = A(X)B(X)*

thanks to (%)
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Creation of Relations

Our goal: multiplicative relation between small degree polynomials.

Main idea : start from H (X —a)=XT=X (*x).
a€clfq
Let A and B be 2 small polynomials in Fg[X] (i.e. of degree < D).
—a = A(X)IB(X) — A(X)B(X)?
B [Luer, (AX)=0BOO) =y AX)IBIX) = AX)BX)

= AXT)B(X) — A(X)B(X9)

Frob. Wnearity
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Creation of Relations

Our goal: multiplicative relation between small degree polynomials.

Main idea : start from J] (X —a) =X9—X (xx).
a€clfq
Let A and B be 2 small polynomials in Fg[X] (i.e. of degree < D).

B [Locr,(AX)—aBOX) = - A(X)9B(X) — A(X)B(X)“
= AXT)B(X) — A(X)B(X7)
X)

Frob. linearity

)B(X) A(X)B( lgig)

[A, B]D
h(X)P

Frob._Rep. (
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Creation of Relations

Our goal: multiplicative relation between small degree polynomials.

Main idea : start from J] (X —a) =X9—X (xx).
a€clfq
Let A and B be 2 small polynomials in Fg[X] (i.e. of degree < D).

B [Locr,(AX)—aBOX) = - A(X)9B(X) — A(X)B(X)“
= AXT)B(X) — A(X)B(X7)
X)

Frob. linearity

)B(X) A(X)B( lgig)
[A B]D
We finally get: i (X)P

h(X)PB(X) I (AX) = aB(X)) = [A. B]5(X)

aclFy

Frob._Rep. (

Product of small polynomials !!
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A Reduced Factor Base

We have:  hi(X)PB(X) T (A(X) — aB(X)) = [A. B]5(X)

aclFq

polynomials of degree < D

e A natural Factor Base: Irreducible poly in [;[X] of deg < D.
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A Reduced Factor Base

We have:  hi(X)PB(X) T (A(X) — aB(X)) = [A. B]5(X)

aclFq

polynomials of degree < D

e A natural Factor Base: Irreducible poly in [;[X] of deg < D.

@ D, = size of the factor base ™\, =- complexity of Linear
Algebra . The smaller, the better. Until now, D = 3.
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A Reduced Factor Base

We have:  hi(X)PB(X) T (A(X) — aB(X)) = [A. B]5(X)

aclFq

polynomials of degree < D

e A natural Factor Base: Irreducible poly in [;[X] of deg < D.

@ D, = size of the factor base ™\, =- complexity of Linear
Algebra N\, The smaller, the better. Until now, D = 3.

@ What is simple ? Irreducible poly in Fy[X] of degree < 2.
@ But... it's not possible to N\, D, isn't it?
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A Reduced Factor Base

We have:  hi(X)PB(X) T] (A(X) — aB(X)) = [A. B]5(X)

acF R
¥ Factorization ?

polynomials of degree < D
e A natural Factor Base: Irreducible poly in [;[X] of deg < D.
@ D, = size of the factor base ™\, =- complexity of Linear
Algebra N\, The smaller, the better. Until now, D = 3.
@ What is simple ? Irreducible poly in Fy[X] of degree < 2.
@ But... it's not possible to N\, D, isn't it? Previous constraints:

© Need to generate enough good equations = equations where
[A, B], splits in terms of degree < 2. Pb: the probability 7 to
have good equations is too small w.r.t the number of
equations required (need P > 1/2).

@ Need to be able to descent large polynomials to degree 2 ones.

A. Joux and C. Pierrot Simplified Settings for DLogs



A Reduced Factor Base: Systematic factors of [A, B],

@ Our goal, solving pb 1: i.e. improve the probability P.

e How 7 [A, B], is a degree 6 polynomial. The prob that it
factors into degree 2 polynomials is too low.
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A Reduced Factor Base: Systematic factors of [A, B],

@ Our goal, solving pb 1: i.e. improve the probability P.

e How 7 [A, B], is a degree 6 polynomial. The prob that it
factors into degree 2 polynomials is too low.
Yet, [A, B]p has a systematic factor of degree 3 | Namely
X h1(X) = ho(X).

@ A degree 3 polynomial factors into terms of degree at most 2
with prob P > 2/3 > 1/2.
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A Reduced Factor Base: Systematic factors of [A, B],

@ Our goal, solving pb 1: i.e. improve the probability P.

e How 7 [A, B], is a degree 6 polynomial. The prob that it
factors into degree 2 polynomials is too low.
Yet, [A, B]p has a systematic factor of degree 3 | Namely
X h1(X) = ho(X).

@ A degree 3 polynomial factors into terms of degree at most 2

with prob P > 2/3 > 1/2.

= Linear Algebra permits to recover the DLogs of the factor base
in O((# factor base)?(# of entries)) ~ O(g°) operations.

q? q
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Extend the Factor Base to Degree 3

Our goal: Solving pb 2 i.e. extend the factor base to degree 3
BUT without performing linear algebra on a matrix of dim q3.
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Extend the Factor Base to Degree 3

Our goal: Solving pb 2 i.e. extend the factor base to degree 3
BUT without performing linear algebra on a matrix of dim q3.

© Divide the irreducible deg. 3 monic polynomials in groups.

q grps

|
)
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Extend the Factor Base to Degree 3

Our goal: Solving pb 2 i.e. extend the factor base to degree 3
BUT without performing linear algebra on a matrix of dim q3.

© Divide the irreducible deg. 3 monic polynomials in groups.

q grps

|
)

What is simple 7 To consider that 2 polynomials belongs to
the same group if they have the same constant coefficient.
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Extend the Factor Base to Degree 3

Our goal: Solving pb 2 i.e. extend the factor base to degree 3
BUT without performing linear algebra on a matrix of dim q3.

© Divide the irreducible deg. 3 monic polynomials in groups.

q grps

|
)

What is simple 7 To consider that 2 polynomials belongs to
the same group if they have the same constant coefficient.

@ Given , generate equations involving only poly in and
degree 1 and 2 polynomials (whose logs are already known).
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Extend the Factor Base to Degree 3

@ An example: let (- {(X3+c)+aX?+BX|(a, B) € Fg?}.

)
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Extend the Factor Base to Degree 3

@ An example: let (- {(X3+c)+aX?+BX|(a, B) € Fg?}.

Reducible @ Irreducible = new unknowns
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Extend the Factor Base to Degree 3

@ An example: let (- {(X3+c)+aX?+BX|(a, B) € Fg?}.

Reducible @ Irreducible = new unknowns

As for degree 2: set A(X) = (X3 +¢) + a X? and
B(X) = (X3 4 ¢) + X and create relations of the form:

m(X)* B(X) [ (A(X) —aB(X)) = [A, Bl3(X)

a€ly .
deg 8 with these A and B

@ + deg 3 systematic factor
all belongs to " + divisible by X
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Extend the Factor Base to Degree 3

@ An example: let (- {(X3+c)+aX?+BX|(a, B) € Fg?}.

Reducible @ Irreducible = new unknowns

As for degree 2: set A(X) = (X3 +¢) + a X? and
B(X) = (X3 4 ¢) + X and create relations of the form:

m(X)* B(X) [ (A(X) —aB(X)) = [A, Bl3(X)

a€ly .
deg 8 with these A and B

@ + deg 3 systematic factor
all belongs to " + divisible by X

Prob that [A, B]; factors into deg < 3 = 41%. Enough !
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Extend the Factor Base to Degree 3

@ An example: let (- {(X3+c)+aX?+BX|(a, B) € Fg?}.

Reducible @ Irreducible = new unknowns

As for degree 2: set A(X) = (X3 +¢) + a X? and
B(X) = (X3 4 ¢) + X and create relations of the form:

m(X)* B(X) [] (A(X) —aB(X)) = [A, B3(X)
€l deg 8 with these A and B

@ + deg 3 systematic factor
all belongs to " + divisible by X

Prob that [A, B]; factors into deg < 3 = 41%. Enough !
@ Complexity to recover the Dlogs of all degree 3 polynomials:

O((# © )(# factor base)?(# of entries)) ~ O(q°) ops.

q q? q
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Extend the Factor Base to Degree 4

Our goal: extend the factor base to degree 4
by performing smaller linear algebra steps.
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Extend the Factor Base to Degree 4

Our goal: extend the factor base to degree 4
by performing smaller linear algebra steps.

o0 00

@ 00 O

o0 00
(L) @@
- q grps —Q® O @@
C 1) @@

o0 00

@ 00 O

oo 00
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Extend the Factor Base to Degree 4

Our goal: extend the factor base to degree 4
by performing smaller linear algebra steps.

o0 o0
® 00 ©
o0 00
o0 ?@
) —@ @ @@
¥ e
oo oo
® 00 ©
eo 06

What is simple 7 To consider that:
2 poly belongs to the same if same constant coefficient.
AND 2 poly belongs to the same @ if same coeff before X.
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Extend the Factor Base to Degree 4

Our goal: extend the factor base to degree 4
by performing smaller linear algebra steps.

o0 o0
® 00 ©
o0 00
o0 ?@
) —@ @ @@
¥ e
oo oo
® 00 ©
eo 06

What is simple 7 To consider that:
2 poly belongs to the same if same constant coefficient.
AND 2 poly belongs to the same @ if same coeff before X.

@ Given . generate equations involving only poly in it and
degree 1, 2 and 3 polynomials.
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Extend the Factor Base to Degree 4

@ How ? Previous techniques (bilinear descent from 4 to 3) +
additional equations + systematic factors of [A, B],.
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Extend the Factor Base to Degree 4

@ How ? Previous techniques (bilinear descent from 4 to 3) +
additional equations + systematic factors of [A, B],.

@ Complexity of DLogs computation of ONE :
O((# @ i ) - (# .)2 (#entries)) = O(q°) ops.
—_—— — —— —\—

q q2 q
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Extend the Factor Base to Degree 4

@ How ? Previous techniques (bilinear descent from 4 to 3) +
additional equations + systematic factors of [A, B],.

@ Complexity of DLogs computation of ONE :
O((# @ i ) - (# .)2 (#entries)) = O(q°) ops.
—_—— — —— —\—

q q? q
@ Final complexity dominated by the first computation:

)
Q. O
o0
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Extend the Factor Base to Degree 4

@ How ? Previous techniques (bilinear descent from 4 to 3) +
additional equations + systematic factors of [A, B],.

@ Complexity of DLogs computation of ONE :
O((# @ i ) - (# .)2 (#entries)) = O(q°) ops.
—_—— — —— —\—

q q? q
@ Final complexity dominated by the first computation:
1 Unknown

OO
ON©,
OO
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Extend the Factor Base to Degree 4

@ How ? Previous techniques (bilinear descent from 4 to 3) +
additional equations + systematic factors of [A, B],.

@ Complexity of DLogs computation of ONE :
O((# @ i ) - (# .)2 (#entries)) = O(q°) ops.
—_—— — —— —\—

q q? q
@ Final complexity dominated by the first computation:
1 Unknown

[ Reducible O
I Bili. desc.
4—3 @ O
OO
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Extend the Factor Base to Degree 4

@ How ? Previous techniques (bilinear descent from 4 to 3) +
additional equations + systematic factors of [A, B],.

@ Complexity of DLogs computation of ONE :
O((# @ i ) - (# .)2 (#entries)) = O(q°) ops.
—_—— — —— —\—

q q? q
@ Final complexity dominated by the first computation:
1 Unknown

[ Reducible
I Bili. desc. @ %

[ %|E %esc. QQ
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Extend the Factor Base to Degree 4

@ How ? Previous techniques (bilinear descent from 4 to 3) +
additional equations + systematic factors of [A, B],.

@ Complexity of DLogs computation of ONE :
O((# @ i ) - (# .)2 (#entries)) = O(q°) ops.
—_—— — —— —\—

q q? q
@ Final complexity dominated by the first computation:
1 Unknown

[ Reducible
I Bili. desc. @ %

[ %|E %esc. QQ
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Extend the Factor Base to Degree 4

@ How ? Previous techniques (bilinear descent from 4 to 3) +
additional equations + systematic factors of [A, B],.

@ Complexity of DLogs computation of ONE :
O((# ® ) - (# .)2 (#entries)) = O(q°) ops.
—_—— — R;—’ ——
q q q

@ Final complexity dominated by the first computation:
1 Unknown

[ Reducible @@
e B|I| desc. @ G = Final complexity of extension to deg 4

=3 in O(q°) operations
B B desc. in ULgr)op :
gl dese. (p(p
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Extend the Factor Base to Degree 4

@ How ? Previous techniques (bilinear descent from 4 to 3) +
additional equations + systematic factors of [A, B],.

@ Complexity of DLogs computation of ONE :
O((# ® ) - (# .)2 (#entries)) = O(q°) ops.
—_—— — R;—’ ——
q q q

@ Final complexity dominated by the first computation:
1 Unknown

[ Reducible @@
B B|I| desc. @ G = Final complexity of extension to deg 4

3 in O(q°) operations
B B desc. in &Lg) op .
g g 9@

Final asymptotic complexity of the three first phases:

0(q°) operations — to be compared with previous O(q"). @
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And in practice ?

@ New record in characteristic 3 on [F3s.479, a finite field of
cardinality a 3796-bit integer.

o Not a special extension field such as Kummer extension !
e Make use of the Dual Frobenius Representation combined with
the useful variant (both not presented here).
@ To be compared with previous record in characteristic 3
by Adj, Menezes, Oliveira and Rodriguez-Henriquez on a
1551-bit finite field.

@ Time : 8600 CPU-hours &~ 1 CPU-year
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General group
Elliptic curve

Hyperelliptic
curve *

Medium chara

finite field *

I
High chara
inite field *

Small chara
finite field *
N A

EXponentia)

€Xponentjy)

Thank you for your attention !

COmPIeXity

Sub-,

quasi Polynomia)
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